Experimental structures

What is structurally non conventional?

Marine Bagnéris

1 Introduction

2 Definitions

3 Current & traditional structural theory

4 Non conventional approaches

5 Example of non conventional tools

6 Conclusion

- Permanent loading (total dead load)
- variable loading (snow, etc)

Gravitational forces

- Wind pressure
- ▶ Inertia forces (earthquakes, dynamic accelerations,...)

Introduction

Internal forces

-----Behaviour?

- Structural theory based on models
- Hypotheses must be done
 - ...and define boundaries of the behaviour model
 - need to discuss the meaning of current vocabulary

Deformation

Strain

Définitions

STRAIN

STRAIN

Zaha Hadid – Strasbourg - France

- Rigidity
 - Material stiffness
 - ---- Young Modulus E

Anish Kapoor – Tate Gallery - UK

- Key boundaries and general assumptions
 - ----- hard materials
 - elastic strength
 - ----- small deflections
 - ----- small deformations
 - ---- static
 - planarity, orthogonality

Erwin Wurm – fat house moller 2003

- Key boundaries and general assumptions
 - hard materials
 - elastic strength
 - small deflections
 - small deformations
 - ---- static
 - planarity, orthogonality

- Potential boundaries
 - soft materials
 - —— "new" materials
 - large deflections
 - large deformations
 - dynamic, shape actualisation

Erwin Wurm – fat house moller 2003

Example of non conventional tools

- Share a same vocabulary to communicate between design partners
- A better understanding of the current assumptions aims at pushing over some boundaries
- Be careful with tools...
 - ----- Think first