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Abstract

The design and construction of free-form glass roofing structures is generally accomplished through the use of either planar

triangular glass facets or curved (formed) glass panes. This paper describes ongoing research on the constructability of such

structures using planar quadrilateral glass facets for the Jerusalem Museum of Tolerance project by Gehry Partners, in

collaboration with Schlaich Bergermann & Partners, engineers. The challenge here lies not only in the development of a

geometric strategy for generating quadrilateral planar facet solutions, but also in the fact that said solutions must closely match

the designs created initially in physical model form by the architects.

We describe a simple but robust geometric method for achieving the structure by incorporating the necessary geometric

principles into a computational parametric framework using the CATIAVersion 5 system. This generative system consists of a

hierarchical set of geometric ‘control elements’ that drive the design toward constructible configurations. Optimization

techniques for approximating the generated structural shape to the original created by the designers are also described. The

paper presents the underlying geometric principles to the strategy and the resulting computational approach.
D 2003 Published by Elsevier B.V.
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1. Introduction

The design for the Jerusalem Museum of Tolerance

(referred to in this paper as MOT), a project of the

Simon Wiesenthal Center, is currently under develop-

ment at Gehry Partners. This voluminous complex is a

multifunctional group of building components, each

of which is given unique design character within the

context of the overall design (Fig. 1). A major
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component of the project is a series of large, free-

form glass structures that are the subject of discussion

in this paper. Seven glass surface structures are used,

including some functioning as walls. The two largest

segments cover a large space formed by a curved

Museum building and two other components, the

Grand Hall and the Research Center, and were the

subjects of the initial investigations described in this

paper.

Resolving these glass structures is a twofold prob-

lem: first, it is a problem of computational geometry

and resulting implications for fabrication; second, it is

a problem of user interaction and design methods. The



Fig. 1. The Museum of Tolerance Project, aerial view.
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latter problem is of particular importance, because

Gehry Partners has developed a very specific way of

working with regard to how designs are created and

developed, and how the computer supports this pro-

cess. Finding a viable geometrical solution mecha-

nism that fits into this framework is paramount in

ensuring that the generated forms reflect the original

design intention.
Fig. 2. The Museum of Tolerance
2. From physical models to digital mockups

Over the past 10 years, Gehry Partners (formerly

Frank O. Gehry and Associates) has developed a set

of unique working methods centered on the concept of

the ‘‘Master Model’’. In the context of Frank Gehry’s

work, the firm uses the computer as a design devel-

opment and design production tool: in other words,
CATIA V5 Master Model.



Fig. 3. Data acquisition from physical models.

Fig. 5. Quadrangular mesh of a double curved surface.
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the computer is used to capture a formal design

intention and make it constructible (Fig. 2).

Within the Gehry studio, the designs produced by

Frank Gehry working with two senior designers are

developed by a set of dedicated design teams. This

design intent is developed primarily in a sculpted,

physical model form. The ‘‘Master Model’’ surface

geometries are created through acquisition of 3D

geometrical information from the physical models

by means of a 3D spatial scanner arm (Fig. 3). The

scan process yields a constructive data point set from
Fig. 4. The DG Bank Berlin atrium roof.
which then matching 3D computer geometry is de-

veloped. This ensures an accurate representation of

the design intent within the computer, while at the

same time allowing the data to be manipulated as

required to yield constructible geometric solutions.

Once the framework for a given project is in place,

in terms of programmatic requirements, form and

layout, an initial computer model is built. The model

is continuously refined during the design development

process. Over time, the computer model acquires a

large amount of information that makes the Master

Model into an integrated, three-dimensional database
Fig. 6. Basic geometric principle for planar quadrangular mesh.



Fig. 7. Geometric principle for translation surfaces.
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of project information that is considered the digital

mockup of the project. For a more detailed discussion

of the core technologies used at Gehry Partners, see

[1] and [2].
3. The problem: free-form faceted glass structures

Gehry Partners and Schlaich Bergermann and

Partner have successfully collaborated in the past

on the solution of complex form glass roof systems,

notably on the DG Bank building in Berlin (Fig. 4).

On that project, the central atrium space was covered

by a longitudinally symmetrical glass structure built

of triangular planar glass facets. The adoption of this

strategy for the MOT project proved unfeasible,

mainly because of the sheer economy of scale

generated by the quantity and dimensions of glass

surface structures (roofs and some lateral enclosure

elements).
Fig. 8. Translational surface covering an
Although triangulated surfaces can describe any

free-form shape [5], employed in construction, they

are economically less advantageous than equivalent

surface structures built of quadrilateral (four-sided)

facets: Quadrangular mesh constructions require fewer

machining operations on the glass, and fewer mullions

(as they eliminate the diagonal mullion from one side

of the triangle). However, this achieved economy of

scale can only be maintained if the quadrilateral facets

of the surface structure are maintained planar: the cost

of single- or double-curved glass facets would imme-

diately void the premise for a quadrilateral solution.

There are, however, geometric principles that can

guarantee the geometric planarity of facets in a

quadrangular mesh system, using translation surfaces.

Gehry Partners leveraged Schlaich Bergermann &

Partners’ experience to use this method on the MOT

project.
4. Translation surface structures: basic geometric

principles

Quadrangular-meshed nets may be used to describe

any double-curved surface, but usually the quadran-

gles of the surface are not planar (Fig. 5). In the

following section, simple methods are presented for

creating an almost unlimited multitude of shapes for

double-curved surfaces with planar quadrangles.

One method is based on the simple principle that

two spatial, parallel vectors are always defining a

planar quadrangular surface. The vectors and the

connection between their points of origin and end
elliptical (top left) or circular plan.



Fig. 9. Joining of translational surfaces.
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points make up the edge of the quadrangular surface.

This is not the only method—but a rather simple

one—because a planar surface may also be defined

by two vectors not running parallel to each other.

Assuming one direction of the quadrangular-

meshed net to be the sectional curve with its individ-

ual sections being the lateral edges, and assuming the

other direction with its individual sections being the

longitudinal edges and regarding the two lateral re-

spective longitudinal edges as vectors, there results

two design principles for plane quadrangular mesh:

(a) The longitudinal edges of a row of mesh form

parallel vectors (Fig. 6a).

(b) The lateral edges of a row of mesh form parallel

vectors (Fig. 6b).

4.1. The longitudinal edges of a row of mesh form

parallel vectors

Any spatial curve may be chosen as sectional

curve—it does not have to be plane. The parallel

vectors generate the initial row of mesh (Fig. 6a). The
Fig. 10. Hyperbolic paraboloid as translational su
new sectional curve is the line between the end points

of the vectors. The following row of mesh is gener-

ated according to the same principle, but of course the

vectors here could have a different direction and

length than the previous ones, thus adding one row

to the next. Almost any shape consisting of trapezoi-

dal mesh is possible. An analytical description of the

resulting surfaces is omitted here because, following

the procedure described above, these surfaces are

easily generated with CAD.

To obtain homogeneous structures, analytical

curves can be used to develop the sectional curves

and the direction of the vector. If, for example, the

sectional curve is plane and all vectors of the longi-

tudinal edges have the same length, the result will be

the design principle of the translation surface which

plays a major role in the practical application.

4.2. A special application: the translation surface

As published already in [3,4,6], translation surfaces

permit a vast multitude of shapes for grid shells

consisting of quadrangular planar mesh.
rface (left) and joining possibilities (right).



Fig. 11. Translation surface covering two semi-circular plans connected with tangential edges.

Fig. 12. Reduction of longitudinal edges by introducing a triangular

element (right).
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Translating any spatial curve (generatrix) against

another random spatial curve (directrix) will create a

spatial surface consisting solely of planar quadrangu-

lar mesh (Fig. 7). Parallel vectors are the longitudinal

and lateral edges. Subdividing the directrix and the

generatrix equally results in a grid with constant bar

length and planar mesh.

If, for example, one parabola (generatrix) translates

against another parabola (directrix) perpendicular to it,

the result will be an elliptical paraboloid with an

elliptic layout curve. Two identical parabolas generate

a rotational paraboloid with a circular layout curve

(Fig. 8). Innovative shapes can be created by adding

translation surfaces (Fig. 9).

A directrix curving anticlastically to the generatrix

results in a hyperbolic paraboloid, which can also be

formed by two systems of linear generatrices (Fig.

10). This allows for the creation of hypar-surfaces

with straight edges which are easy to store and can be

joined in a variety of combinations (Fig. 10). A layout

of two circles connected by their tangents can be

covered by a translation surface consisting of two

rotational paraboloids with a hypar-surface in between

(Fig. 11). All these examples consist of a grid with

constant bar length and planar mesh.

This paper presents only the basic possibilities. A

greater variety in shapes is described in [3].

4.3. The lateral edges of a row of a mesh form

parallel vectors

Any—not necessarily linear—spatial curve can be

selected as sectional curve. The new sectional curve

will be generated by parallel translation of its lateral
edges, resulting in a new vector of these edges. Its

randomly chosen length determines the shape of the

new sectional curve, which is not similar to the

previous one (Fig. 12). The longitudinal edges of

the plane quadrangular mesh are determined by the

line between the points of origin and the end points of

the respective lateral edge vectors.

The next row of mesh will be created following the

same principle, with the shape of the new sectional

curve depending on the length of the lateral edges.

Thus, row after row is generated and any shape with

plane trapezoidal mesh is possible.

To obtain homogeneous structures, the parallel

vectors of the lateral edges can be developed from

analytical curves by centric or eccentric expansion or

by equidistant parallels. For example, the centric

expansion of a sectional curve results in surfaces

with homogeneous, longitudinal edges respective to

tapering rows of mesh. These surfaces obtained by

scaling a translation surface are called in this paper

scale-trans-surfaces.



Fig. 13. Expanding a curve centrically or eccentrically results in parallel lateral edges.
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To avoid extreme concentration, the number of

longitudinal edges may be reduced by setting the

vector length to zero, if necessary (Fig. 12).

4.4. A special application: scale-translation surfaces

The centric expansion of any sectional curve yields

a new one with parallel edges (Fig. 13). The center of

expansion may be chosen at random. Centric expan-

sion causes each lateral edge vector of the sectional

curve to lengthen or shorten by the same factor, while

maintaining its direction. Thus, from the (n)th sec-

tional curve evolves the similar (n + 1)th sectional

curve which is then spatially translated—although

without rotation—to any given spot (Fig. 14). The

longitudinal edges are determined by the line between

the points of origin and the end points of the respec-

tive lateral edge vectors. The next row of mesh will

be created following the same principle with the

shape of the new sectional curve depending on the

selected expansion factor. In this way row after row is

generated.

To obtain homogeneous structures, analytical

curves such as circles, ellipses, hyperbolas or poly-
Fig. 14. Surfaces with plane quadrangular meshes
nomials can be divided equally (identical lateral

edge length) and expanded centrically. Translating

the center of expansion of the resulting sectional

curves along an analytical spatial curve (generatrix),

and adjusting the translation distance to the expan-

sion factor, results in homogeneous surfaces with

longitudinal edges of the same length in each mesh

and lateral edges of the same length in each

sectional curve. Fig. 15 shows a double-curved

surface with plane quadrangular mesh, created by

centrically expanding elliptical curves and translat-

ing the center of expansion along a spatially curved

directrix. Fig. 16 describes a sectional curve con-

sisting of two adjoining elliptical curves. The sec-

tional curve in Fig. 17 is composed of randomly

chosen curves.

The ‘‘trajectory dome’’ in Fig. 18 is created by

centric expansion of a spatially curved generatrix and

translation along a defined edge curve. The result is a

dome with plane quadrangular mesh over a square

plan! Sectional curves evolving from a circle with the

center of expansion in the circle’s center and are then

translated along a straight directrix create a special

application, the rotational surface (Fig. 19). Translat-
are generated by expansion and translation.



Fig. 15. Surface composed of plane quadrangular mesh generated by centrical expansion and translation (scale-trans surfaces).
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ing these curves along a curved directrix yields a

totally different surface with plane quadrangular

mesh. This illustrates the multitude of shapes that

are possible with this procedure.

4.5. A special application: equidistant sectional

curves

In some instances, it might be more advantageous

to generate the new sectional curve by equally trans-

lating the individual lateral edges instead of using

centric expansion. In this case the points of origin and

the end points of the lateral edge vectors are on the

bisector of the plane sectional curve (Fig. 20). Again,

the lines between the points of origin and the end

points of the respective lateral edge vector produce the
Fig. 16. Expansion of an elliptical curve and translatio
longitudinal edges. The next row of mesh will be

created following the same principle. The resulting

sectional curves may be translated at random or along

an analytical spatial curve (directrix).

4.6. Reference projects by Schlaich Bergermann &

Partners

The principle of an evenly-meshed translation

surface with different parabolas as generatrix and

directrix was first realized with the roof over a

courtyard in Rostock, Germany (Fig. 21). A parabola

(generatrix) translating across another parabola (direc-

trix) perpendicular to it results in an elliptic layout

curve and an evenly meshed net consisting of plane

quadrangular mesh.
n of the curve along a spatially curved directrix.



Fig. 17. Expansion of a random curve and vertical translation of the curve.
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In 1999, a sequence of grid domes was chosen for

the fair in Hannover, Germany (west entrance). Gen-

eratrix and directrix are identical parabolas (Fig. 22),

resulting in domes over quadrangular layouts that can

be linked at random, again having quadrangular or

rectangular layouts.

One example of designing rather difficult geome-

tries as translational surfaces is the roof over a

courtyard in Stuttgart, Germany. Although in this case

there are several adjoining irregular courtyards, it was

possible to create a continuously curved transition

area consisting solely of plane and evenly meshed

quadrangles (Fig. 23).

Trapezoidal layout of courtyards such as in Leip-

zig, Germany (Fig. 24) can be roofed with a hyper-

bolic paraboloid generated by anticlastic parabolas as

generatrix and directrix.

For the hippopotamus house in the Berlin Zoo, two

parabolas with a freely defined transition curves were

chosen as a directrix for the roof over two circular

ponds (Figs. 25 and 26).

The plan of the glass roof over the platform of the

new Lehrter railroad station in Berlin follows strictly
Fig. 18. ‘‘Trajectory dome’’ covering a squa
the flaring tracks. The three-centered arch cross-

section of the roof, as shown in Fig. 27, allows for

optimal adjustment to the clearance and to the flaring

tracks. To obtain planar quadrangular mesh, the

sectional curve was determined by centric expansion.

Thus the rise of the hall and the roof’s profile

increase with the flaring, an effect that enhances

the design.
5. Implementation

5.1. Parametric associative modeling

The beginning of the Design Development phase

of the MOT project coincided with the introduction at

Gehry Partners of the new CATIA platform, Version 5

(currently Release 8). CATIA V5 differs from the

previous V4 in a great number of ways, presenting

improvements in ease of use, interactivity and com-

patibility. The greatest difference is that V5 is a fully

parametric associative modeling system, and can be

greatly controlled by harnessing its associative capa-
re plan with plane quadrangular mesh.



Fig. 19. Rotational surfaces as a special application of centrically expanded circular curves.
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bilities by means of built-in scriptable intelligence

features known as KnowledgeWare.

This coincidence has proven fortuitous, because

V5 has allowed us to program the necessary rules and

constraints into CATIA that are necessary to generate

translation surfaces that will guarantee planar, quad-

rilateral facets. Programming here is not intended

literally as ‘coding instructions’, though the result is

the same. Rather it is the ability to embed logical

constraints, directives and effectors into the model

while it is being built. Consequently, any changes

made on the completed model are only possible

within the framework of these constraints that control

the ‘‘translationalness’’ of the surface structure; in

other words, any shape possible that can be generated

by the constrained model is guaranteed to be a

translation surface because of the rules and constraints

that control it. In short, programming in the sense of

CATIAV5’s capabilities can be understood as a means

of imbuing a design with control features that corre-

spond, conceptually, to an implementation of the

notion of spatial programming or design structuring.

5.2. Structuring of the model

The sequence of creating such models has been

relatively conceptually straightforward, though navi-
Fig. 20. In the case of equidistant curves the lateral edges meet in

the bisector.
gating the meanders of CATIA V5’s complex feature

set and associative hierarchy system has proven a

challenge at times. Because the system records every

element created as part of a semantic logical specifi-

cation tree, it is possible to continue referencing and

controlling each geometric element of the model as it

is developed. In other words, geometry within the

model is constructed as a function of other pieces of

geometry previously placed, with the associative

relation being maintained in the specification tree.

Any changes thus made to geometric elements up-

stream in the tree immediately trigger an ‘update’ or

re-configuration in those derived downstream. Fur-

thermore, it is possible to embed into the model

numerical and logical parameter values that can be

used to control the geometry, and can be linked to the

knowledge features described above to produce a

reconfigurable intelligent model that permits con-

trolled manipulation of the geometry within the con-

straint sets placed on it.

For the MOT glass roof structures, we used the

scaled translation surface structure described in Sec-

tion 4.4 in order to be able to match the translation

surface as closely as possible to the original designed

shape. The resulting parametric model was in fact

relatively straightforward. It was built in the same

logical sequence used to geometrically determine the

translation surface geometry:

I. Three sets of control points are created for three

control curves:

a. Generatrix

b. Directrix

c. Scaling curve (Law)

Curve (c) is a spline curve used to uniformly

control the scaling in the scaled translation sur-

face. CATIA can read numeric values off curves



Fig. 21. Rostocker Hof, Rostock, Germany; grid dome as translation surface.
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as a ‘law’ function that can be used, as parame-

ters, to drive other functions—in the case the

scaling of the translated curves over the directrix.

II. The generatrix, directrix and law curves are created

over the control point sets.

III. Two distance parameters G and D are used to

control the spacing of vertices in the U and V

directions on the translation surface.

IV. Equidistant points are placed on the directrix at D

distance intervals using Euclidean (spherical

absolute) spacing to ensure equal length for each

mullion line.

V. The generatrix is translated over the equidistant

points on the directrix; at each translation, the

generatrix curve is also scaled by a value S read
Fig. 22. West entrance, Hannover Fai
from the law curve at the correspondent abscissa

value on the length of the law curve reference.

VI. Equidistant points are placed on the translated and

scaled generatrix curves at (G*S) scaled distance

intervals using Euclidean (spherical absolute)

spacing to ensure equal length for each mullion

line on each specific generatrix curve.

5.3. Control of the translation surface structure

Control of the surface is achieved by combining a

combination of any of the following:

I. Modifying the control points for the directrix

curve.
r, joined translational surfaces.



Fig. 23. Courtyard roof of the former Bosch Area, Stuttgart, Germany; grid dome as translational surface with planar mesh.
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II. Modifying the control points for the generatrix

curve.

III. Modifying the control points for the law (scaling)

curve.

IV. Modifying the D and G distance parameter values.

We now have a constrained reconfigurable model of

the translation surface structure. By modifying indi-

vidual or combinations of the above control elements,

we can reconfigure the model to match the shape of the

original scanned shape (see Section 5.5). The generat-

ed surface is then trimmed to match the plan projection
Fig. 24. Courtyard roof industrie
of the original design shape (Fig. 28). Because of the

constraints of the translation surface, it is not possible

to perfectly match the original surface, but the combi-

nation of translation and scaling gets quite close.

Once the shape of the surface has been established,

the entire construction of the glass structure can be

placed on it. The generated geometry permits the

spatially correct placement of mullion elements on

the underlying wireframe (Fig. 29). Due to the asso-

ciative nature of the model, any changes made ‘‘late in

the game’’ to the shape of the surface for aesthetic,

structural, or other reasons will percolate through the
palast, Leipzig, Germany.



Fig. 25. Glass dome of the Hippo House at the Berlin Zoo as translation surface with planar quadrangular mesh.
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model and reflect through to the final surface, includ-

ing mullion layouts.

5.4. Automation and geometric correctness

The generation of the geometric and topological

requirements for a translation surface structure can be

computationally automated such that, by selecting the

appropriate input elements (normally the control ele-

ments listed in Section 5.3), the system can automat-

ically generate the entire parametric structure which,

by definition, guarantees true translation surface con-

formity. One can conceive of this approach as a kind

of automated ‘translation surface template’.
Fig. 26. Glass dome of the Hippo
5.5. Form-finding processes

As we have seen, we can structure a reconfigurable

model that contains, by its definition, the rules and

constraints that make a translation surface. In other

words, once the structure is in place, it still must be

‘shaped’, using the control elements described in

Section 5.3 to approximate as closely as possible

the original surface created in model form by the

designers.

This form-finding process itself presents a number

of options, depending on where one sees the actual

design event occurring. If we assume that the design

of the shape in question has been completed in model
House at the Berlin Zoo.



Fig. 27. Platform roof of the Lehrter railroad station in Berlin. Plane quadrangular glass panels obtained by centric expansion and translation of

the sectional curves.
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form, then the entire process described in this paper is

nothing other than a mechanistic solution for the

construction of said shape. However, because a design

process is in fact more complex and cyclical, then one

could assume that even after the translation structure

has been parametrically modeled, modifications can

still occur that can substantially affect the actual form.

In the Gehry studio, revisions are constantly made

to the designs in physical model form, either for

aesthetic, programmatic or—in the case of the glass
Fig. 28. Parametric-associative model showing original scanned surface fr

trimmed generated translation surface (violet).
structures—for structural reasons. For example, sub-

stantial modifications to the designers’ approach in

determining their shape had to be made, in order to

ensure greater degrees of curvature in the surface that

would ensure structural feasibility without, say, the

need for external support elements such as columns.

Manual form-finding: The directrix and generatrix

curves can be modified to ‘tweak’ the surface into

conforming to the original, as can the scaling ‘law’

curve. Interestingly, we have found that, to a very high
om physical model (dark blue), generatrix and directrix curves, and



Fig. 29. Mullions placed on the wireframe of generated translation lines are positioned correctly in space to guarantee planar quadrilateral facets.

Any change in the underlying surface automatically updates the mullions’ positions.

Fig. 30. Optimization techniques can be used to approximate the form of the generated translation surface (yellow) to that of the original

scanned surface (blue) by minimizing the distance between corresponding sampled surface points.
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degree, human intuition is a substantial factor in this

method. Determining, for example, the starting con-

figurations for directrix and generatrix in such a way

that they produce very close configuration from the

outset is a qualitative judgment that comes as much

from experience with the project in hand as it does

from the user’s CAD modeling abilities.

One scenario that has been explored at Gehry

Partners is the designer working directly on the

parametric model with the CAD operator: the designer

can make changes ‘live’ to the model. Comments such

as ‘can you make it a little more curved here’ or

‘flatter there’ can be translated directly into the

structure’s form by manipulating the control elements

on the fly.

Computational form-finding: If we assume that no

modifications are made to the model’s shape, then one

could enable the computer to automatically approxi-

mate, as closely as possible, the translation structure

to the original form (Fig. 30). This can be done

through the application of search methods, such as

Simulated Annealing or Linear Hill-climbing, or non-

linear techniques such as Genetic Algorithms. Re-

gardless of the method, the search mechanism

continues to modify the control parameters while

measuring the resulting conformity of the surface to

the original design shape.
6. Conclusions

Using CATIA Version 5 enabled us to clarify the

procedures necessary for implementing free-form pan-

elized structures using translation surface geometries.

Parametric/associative infrastructure, combined with
constraint-solving capabilities, allows for the structur-

ing of design concepts early; as well as for controlling

design development tool further downstream. Further-

more, by combining the techniques described in

Sections 5.4 and 5.5, we can see the parametric model

as a kind of machine that is capable of producing

translation surface structures in response to a partic-

ular set of inputs.

In conclusion, it could be stated that parametric

associative models are also a design refinement tool as

well as a design development and production tool. By

embedding logical control features and constraints

into the model, and using its capabilities for controlled

user interaction, the user can take advantage of the

parametric and associative features of the model to

refine a design within the context of the logic struc-

tured within the model.
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