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ABSTRACT 
 
A new type of “tensegrity like” panel is presented, using a conceptual design based on a structural composition 
comprising two parallel layers of tensile membrane with, in between, a woven structure of bent strips. A 
prototype has been made to demonstrate its feasibility and a mechanical study is performed to investigate the 
relationship between the shape of the panel and its internal initial forces. The objective is to write the structure 
governing equations and, then, to propose different form-finding approaches. The form control method therefore 
allows determining the tension in the membranes according to specified panel geometry. The force control 
strategy provides the form of the undulating strip in accordance to a required tension in the membranes. Several 
numerical calculations, based on the prototype characteristics, are presented. Potential applications are then 
discussed, mainly for façade cladding as well as a possible adaptation of the panel to curved surfaces. 
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1. BACKGROUND 

Originally investigated by engineers or artists like 
R. B. Fuller [1] and K. Snelson [6], tensegrity 
systems were subsequently studied for modules 
with varying structural complexity, for instance the 
triplex (figure 1, left) or the expanded octahedron 
(figure 1, right). 

 

Figure 1. Basic tensegrity modules 

Since these systems are selfstressed spatial 
structures in equilibrium composed of compressed 
struts connected to tensioned cables, the purpose 

was to determine the relationship between their 
geometry and the distribution of internal forces in 
the elements. Such study is called form-finding and 
is a necessary stage in tensegrity system design. 
Two groups of methods may be employed [3]: the 
form controlled ones, where possible forces are 
determined from a given shape, and the force 
controlled ones, which consist in calculating the 
shapes associated with specified forces. A load 
analysis can obviously be performed only after the 
form-finding stage which determines the initial 
form and forces. 

The studies on tensegrity modules have led to the 
development of grids based on the assembly of 
modules [2]. One example is presented in figure 2 
consisting of horizontal upper and lower layers of 
cables with internal tilted components in between 
(struts and cables).  

The next step has entailed with the design of woven 
tensegrity grids [4, 5]. This is based on a 
bidirectional weave of tilted struts; it is then 
impossible to isolate a module is this grid. 
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Tensioned cables create two horizontal upper and 
lower layers; internal elements (cables and struts) 
are located in between (figure 3, left). 

 

Figure 2. Tensegrity grid composed of identical modules 

A 10m by 10m grid was built at Montpellier 

University to test the scale one feasibility (Tensarch 
project, 2000; figure 3, right). 

2. CONCEPTUAL DESIGN OF THE SOFT 
“TENSEGRITY LIKE” PANEL 

The soft “tensegrity like” panel results from 
numerous experimental treatments based on 
physical models. It is composed of two flat layers of 
tensile membrane with undulating strips in between. 
The inner strips are compressed and equilibrate the 
tension in the membranes. Since they are not 
straight, they are also bent and define waves. 
Additional peripheral cables connect the 
membranes to the extremities of the strips to ensure 
the membrane tensions. 

 

  

Figure 3. Woven tensegrity grid (Tensarch project) 

 

A prototype (figure 4) has been made in 
collaboration with the company Ferrari, one of the 
leaders in the manufacture of composite textiles and 
membranes. The size of this squared panel is 
roughly 2.2 m by 2.2 m for 0.22 m width. We 
emphasize on these small dimensions and 
consequently choose to call this system a “panel” 
preferably to a “grid” or a “structure”. The 
membrane is a fabric developed by Ferrari and 
called Defender 7761 composed of PVC coated 
steel threads. 

Each of the 14 undulating strips (7 parallels in two 
orthogonal directions) has 3 repetitive identical 
interior wave segments (same amplitude and 
wavelength) and 2 identical boundary segments. 

They are constructed from a fiber glass composite 
material manufactured by pultrusion with a mm35  
by mm3  cross sectional area. In this prototype, the 
strips are connected to the membrane with rivets 
(figure 5). 



JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS 

 79 

 

Figure 4. Soft “tensegrity like” panel (external view) 

 

Figure 5. Panel internal view 

 
3. FORM-FINDING OF THE SOFT 
“TENSEGRITY LIKE” PANEL 

3.1. Objective of the study 

The purpose is to determine the relationships 
between the geometrical characteristics of the panel 
(dimensions, shape of an inner strip) and the 
internal forces in the elements (tension in the 
membranes, bending moment and compression in 
the strips). 

Such a study corresponds to a form-finding analysis 
and could be envisaged according to a form control 
or a force control strategy. In the form control 
method, the designer specifies the dimensions of the 
panel (side length and height) and will determine 
the corresponding tension in the membrane. In the 
force control method, the membrane tension is 
imposed and the panel dimensions resulting from an 
appropriate strip shape are determined. The 
presented study is based on seven steps: 

- The geometrical parameters are first presented as 
well as the chosen mechanical hypothesis. 

- After that, an analysis of one half strip allows 
writing its static equilibrium and to calculate its 
internal forces (compression and bending moment 
at characteristic points). 

- Then, one half-wave segment of an undulating 
strip is isolated to determine the precise 
relationships between its actions (internal forces 
and external forces exerted by the membranes) and 
its geometry. 

- The obtained results allow proposing a solving 
method devoted to the form control strategy and to 
the force control strategy. 

- The approach is after that completed by analyzing 
the boundary segment of a strip. 

- Finally, the calculation of the strip geometry is 
presented. 

3.2. Panel description and hypothesis 

The panel dimensions are given in figure 6. They 
are dependant on the shape of the undulating strips. 
Hence, the panel height corresponds to the strip 
wave amplitude a and the side length is a multiple 
of the strip wavelength l  (added to the distances 'l  
of the boundary segments). For instance, the side 
length of the prototype panel is m20.2'23 ≈+ ll  
with m22.0≈a . The length of the strip over one 
wavelength is L . 

The upper points of the panel are labeled A to G 
and the lower H to K. 

If we consider one strip from a mechanical point of 
view, the actions may be divided into two 
categories: 
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- the internal forces: the compression axial force N 
and the bending moment M. 

- the “external” forces due to the two membranes 
and to the two peripheral cables. 

The tension in the upper membrane generates 
external forces between the points BC (i.e. the force 

BCT ), CD ( CDT ), DE ( DET ) and EF ( EFT ). The 
lower membrane creates tension forces between HI 

( HIT ), IJ ( IJT ) and JK ( JKT ). Since the interior wave 
segments have the same shape (amplitude and 
wavelength), these forces are identical. The tensions 
in the two membranes are hence constant and equal. 
As a result, the membrane external forces are 

TTTTTTTT ======= JKIJHIEFDECDBC . This 
property will be used in the next step of the study to 
solve the equilibrium equations of a strip (3.3). 

 

 

Figure 6. Panel dimensions 

In this case of an uniform membrane tension and 
since the distance between two parallel strips is 
equal to the wavelength l , the relationship 
between the membrane tension mT  and the 
external membrane force T  acting on the points 
C, D, E and H, I, J, K is mTT l= . 

The peripheral cables are parallel to the 
membranes and connect them to the extremities of 
the boundary strips. The tensions in these cables 
create pulling external forces ABT  and FGT on the 
boundary segments. The panel symmetry leads to 

FGAB TT = . 

The last point deals with the material behavior of 
the composite strip. We will henceforth assume 
that this behavior is elastic linear. 

3.3. Analysis of one half strip 

This part aims to write the static equilibrium of a 
half strip divided in segments and to determine the 
resulting internal forces at the cutting sections. 

Because of the symmetry, a strip is divided in four 
segments (AH, HC, CI and ID, see figure 6). The 
actions (internal forces N and M, external tensions 
due to the membranes and to the cables) acting on 
the extremities of every part are represented in 
figure 7. 

The equilibrium of the different parts leads to 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=++=+
=++=+

=++=+
==+

IDICDDDEI

CICHIIIJC

HCHBCCCDH

ABHHHIAB

and:IDPart
and:CIPart

and:HCPart
and:AHPart

NaMMTNTN
NaMMTNTN

NaMMTNTN
TaMNTT

 (1) 

Since 8 equations are written for 14 unknowns, 5 
conditions must be at least specified. They are 
fixed by the geometrical repetitiveness of the 
interior strip segments, leading to a uniform 
membrane tension and identical external forces: 

TTTTTT ===== IJHIDECDBC   (2) 

Moreover, the horizontal equilibrium of nodes B 
and F gives TTT == BCAB . 

Hence, the resulting internal forces at the ends of 
the different segments are 

TNNNNH 2DIC ====   and 
TaMMMM ==== DICH    (3) 

The bending moment in the strip is thus the same 
at the upper and lower points. The resulting 
actions at the segment extremities (the sum of the 
internal and external forces) are represented in 
figure 8. 
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Figure 7. Actions on the different segments of one half strip 

 

Figure 8. Actions for a uniform membrane tension 

3.4. Analysis of one half-wave segment 

One half of a strip segment wave is isolated, for 
instance the part ID (figure 9). Its amplitude is 
equal to a and the half wavelength is 2/l . The 
length of this half-wave segment is equal to 2/L . 

The objective of this analysis is to obtain a 
relationship between the strip geometry 
(amplitude a and segment length L ) and the 
compression force TNN 2DI == . 

 

Figure 9. Half-wave segment of the strip 

The bending moment M, written in a global 
coordinate system ),( yx rr , is [7] 

TyaM )2( −=      (4) 

Two close plane cross-sections 1S  and 2S  of the 
strip, initially parallel before bending, have a 
relative angle equal to θd  and are distant from sd  
(length of the strip neutral axis between 1S  and 

2S , verifying 222 ddd yxs +≈ , see figure 10).The 
behavior of the composite material is elastic linear 
with a Young’s modulus equal to E. 

 

Figure 10. Relative rotation of two sections 

The normal relative strain ε  of a strip fiber 
bearing a normal stress σ  and located at the 
distance 'y  of the neutral axis is 

'
d
d y

s
θ

=ε  which also verifies '1 yM
EIE

=
σ

=ε

 (5) 
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(where I is the strip cross-section second moment 
of inertia). Therefore 

)2(
d
d 2 ya

s
−α=

θ  with 
EI
T

=α2  (6) 

Since θ≈ sindd sy , it comes 

θα−=α−=
θ sin2

d
d2

d
d 22

2

2

s
y

s
  and so 

sss d
dsin4

d
d

d
d2 2

2

2 θ
θα−=

θθ    (7) 

By integrating 

( ) 1
22 cos4

d
d C

s
+θα=

θ     (8) 

The constant 1C  may be determined by 
considering that for the point I ( 0=x  and 0=y ) 
the angle θ  is equal to zero 

2

d
d

α=
θ a
s

  and thus )4( 222
1 −αα= aC  (9) 

The governing relationship is then 

( ) 2/122 1
4
1cos2

d
d

−α+θα=
θ a
s

  or 

( ) 2/1222 )
2

(sin)22(1
d
d θ

α
−α=

θ
a

a
s

  (10) 

It can be rewritten as 

2/122
2

)sin1(
d2d

ϕ−
ϕ

=α
k

sa   with the parameters 

α
=

a
k 22  and 

2
θ

=ϕ        (11) 

If we consider that at middle height (point P with 
4/l=x  and 2/ay = ) the angle is 0θ=θ  and 

0
d
d

=
θ
s

, then 

0cos4 10
2 =+θα C  and )21(arccos 20 k

−=θ   (12) 

The length of the half-wave segment 2/L  may be 
calculated by integration and considering that for 

0=s  (point I) then 0=θ  ( 0=ϕ ) and for 
4
Ls =  

(point P) then 0θ=θ  (i.e. 
2
0θ=ϕ ) 

∫∫
θ

ϕ−
ϕ

=α=α
2/

0 2/122
24/

0

2 0

)sin1(
d2

4
1d

k
Lasa

L

 (13) 

Since k and 0θ depend on T, it is rewritten as 

∫
θ

ϕ−
ϕ

=
2/

0 2/122
0

)sin1(
d2

4 kEI
TLa  or )(

4
T

EI
TLa

∏=

 (14) 

This equation is highly useful because it provides 
a relationship between the external force T due to 
the uniform membrane tension and the shape of 
the strip (amplitude a, segment length L). It will 
be used during the form-finding procedures. 

3.5. Form control strategy 

This aims to give to the designer the possibility of 
determining the uniform membrane tension mT  
from a specified geometry (strip amplitude a and 
wavelength l ). By considering that the amplitude 
and the strip rigidity EI are imposed, the approach 
is as follows: 

A. From a given value for the strip segment length 
L, the corresponding external force T is calculated 
by using (14) 

)(4 T
La

EIT ∏=       (15) 

This equation is however non linear and in the 
form of )(TfT = . 

We solve it by using the fixed point method: from 
an initial estimated value 0T , the iterative 
sequence )(1 ii TfT =+  is performed until it 
converges to the sought value of T. 

B. The associated wavelength l  is subsequently 
determined. Since )2(cosdcosdd ϕ=θ≈ ssx  and 

∫∫
θ

ϕ==
2/

0

4/

0

0 d)cos(2d4/ sx
l

l , we have 
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∫
θ

ϕ−
ϕϕ

α
=

2/

0 2/1222
0

)sin1(
d)2(cos24

ka
l    (16) 

Then, the membrane tension is calculated with 
l/TTm = . 

C. By repeating this approach for different values of 
the length L, the curves )(LT , )(Ll  and )(LTm  are 
obtained. By writing differently the data, it gives the 
curve )(lmT  and thus the search relationship 
between the membrane tension mT  and the strip 
wavelength l  (that defines the panel dimensions). 

D. The last step consists in evaluating the 
maximum normal stress in the strip to check if it 
remains admissible by the material. For a 
rectangular b by t sectional area, we have 

)26(6 max
2
max

max +=+=σ
t
a

tb
T

tb
N

tb
M ml  (17) 

A numerical application is presented relative to 
the prototype panel ( cm22=a , strip cross-
section moment of inertia 4mm75.78=I , 
composite MPa00036=E  and ultimate bending 
strength MPa0001f =u ). The graphs in figure 11 
show the variation of the wavelength and of the 
membrane tension according to the length L. 

More exploitable curves )(lmT  and )(max lσ , used 
in the form control strategy, are also presented in 
figure 12. 

For the prototype panel, the wavelength is roughly 
cm60≈l . The membrane tension is therefore 

daN/m17≈mT  with MPa75max ≈σ . This 
membrane tension is very low, mainly because of 
practical reasons. The experimental panel was 
assembled “by hand” and the technological 
choices (rivets…) posed difficulties for having 
higher forces. 

 

Figure 11. Curves )(Ll  and )(LTm  

 

Figure 12. Form control strategy: curves )(lmT  and )(max lσ  

3.6. Force control strategy 

This approach aims to give the possibility of 
determining the panel dimensions, depending on 
an appropriate strip shape (wavelength l ), from a 
specified uniform membrane tension mT . 

The approach is as follows (we consider that the 
strip rigidity EI is imposed): 

A. From a given value for the force T, the 
corresponding wavelength l  is calculated 
according to (16). The associate membrane 
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tension is then l/TTm = . 

B. The length L can then be obtained with (15) 

T
T

a
EIL )(4 ∏

=    (18) 

C. By repeating this procedure for different values 
of the tension T, the curves )(Tl , )(TTm  and 

)(TL  are obtained. Differently written, it gives 
the relationship )( mTl  between the panel 

dimension and the membrane tension. 

D. Then, the length )( mTL , necessary to build the 
panel, and the maximum normal stress )(max mTσ , 
coming from (17), are given. 

An application is presented for the prototype 
panel ( cm22=a , mm35  by mm3  composite 
strip with MPa00036=E ). The graphs in figure 
13 illustrate the variation of the wavelength l  and 
of the membrane tension mT  with the force T. 

 

Figure 13. Curves )(Tl  and )(TTm  

The curve presented in figure 14 shows the 
relationship between the strip wavelength l and 
the membrane tension mT . This means that, from 
a required tension, the designer can determine the 
appropriate value of the wavelength and, thus, can 
extrapolate the size of the panel. 

The corresponding values for the length L and for 
the maximum normal stress maxσ  can then be 
determined according to the membrane tension. 
These curves are presented in figure 15. Figure 14. Force control strategy: curve )( mTl  

 

 

Figure 15: Force control strategy: curves )( mTL  and )(max mTσ  
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3.7. Form-finding for a strip boundary wave 

Once the membrane tension and the strip 
wavelength have been calculated, the shape of the 
strip boundary segments must be determined. 

The objective is to calculate, from the given 
uniform membrane tension mT , the length 'L  of a 
strip boundary segment and its associate 
horizontal distance 'l . 

We isolate for that purpose the segment KG 
(figure 16). The tension in the peripheral cable is 
determined according to the uniform membrane 
tension mTTT l==FG . 

 

Figure 16. Strip boundary wave 

Then, the equilibrium of the segment KG leads to 
the same equations as previously written (section 
3.4), excepted different values for the coefficients 

1C  and k :  )2(' 222
1 −αα= aC  and )/(2' α= ak . 

The following governing relationship is obtained 

∫∫
θ

∏=
ϕ−

ϕ
=α=α

2/'

0 2/122
2'

0

2 0 )('
)sin'1(

d2'd T
k

Lasa
L

 

with )
'
21(arccos' 20 k

−=θ   (19) 

Hence, the length of the strip boundary wave 'L  
and its corresponding horizontal distance 'l  are 

T
T

a
EIL )('' ∏

=   and 

∫
θ

ϕ−
ϕϕ

α
=

2/'

0 2/1222
0

)sin'1(
d)2(cos21'

ka
l  (20) 

Moreover, the maximum normal stress is 

)16(6' max
2
max

max +=+=σ
t
a

tb
T

tb
N

tb
M ml  (21) 

An application is performed considering the 
experimental panel ( cm22=a , mm35  by mm3  
composite strip with MPa00036=E ) and, as 
measured on the prototype, cm60≈l . The graphs 
presented in figure 17 show the variation of the 
length 'L , the distance 'l  and of the maximum 
stress max'σ  according to the membrane tension. 

 

 

Figure 17. Curves )(' mTL , )(' mTl  and )('max mTσ  for a strip boundary wave 
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In the prototype panel, the distance cm20'≈l  
was measured. It confirms that the membrane 
tension mT  is close to daN/m16 . 

The first and second curves are important because 
they clearly show that, from a given strip cross-
section, there is a limit value to the membrane 
tension. For daN/m30≈mT  it comes cm5'≈l , 
and this horizontal distance appears to be close to 
a practical limit for the construction of a panel. If 
the required membrane tension is higher, the cross 
sectional area of the strip have to be increased. 

Hence, this study at the boundary defines the strip 
dimensioning according to the membrane tension. 
We note that, since it depends on the strip rigidity 
EI , this parameter can be changed either by 
modifying the strip cross sectional area (value of 
I) or choosing an other material (value of E). 

3.8. Shape of a strip wave segment 

When all the dimensions and forces have been 
determined, the geometry of the undulating strips 
must be accurately defined. The objective of this 
section is to calculate the shape of one wave 
segment of the strip (for instance the part IP, see 
figure 9). The whole strip geometry can then be 
easily obtained by symmetry and replication. 

The x and y coordinates of one point located on a 
wave strip segment can be calculated by 
considering the angle θ  as the shape parameter 
(figures 9 and 10). We have therefore 

∫
θ

ϕ−
ϕϕ

α
=

2/

0 2/1222 )sin1(
d)2(cos21)θ(

ka
x  and 

∫
θ

ϕ−
ϕϕ

α
=

2/

0 2/1222 )sin1(
d)2(sin21)θ(

ka
y    (22) 

An application is performed for the prototype 
panel with a membrane tension equal to 

daN/m17  (hence angle °=θ 21.560  for the point 
P at mid-height). A discrete geometry is obtained 
by calculating the position of several points. The 
shape computed for five points I, P’, P’’, P’’’ and 
P (four portions) is represented in figure 18. 

The length of the portions varies and decreases 
close to the point I. Since this also corresponds to 
the zone where the normal stress in the strip is 

maximal, this discretization is appropriate for a 
FEM analysis. 

 

Figure 18. Shape of the strip wave segment (part IP) 

4. DISCUSSION 

The objective of this paper is to present the 
conceptual design and form-finding of a 
“tensegrity like” soft panel. Developments are 
currently pursued in three main directions. 

A. Mechanical behavior analysis: The knowledge 
of the panel dimensions and initial forces provides 
the necessary data for a FEM analysis with 
various loading cases. This aims to study the 
system strength and stiffness, including a possible 
slackening of the membranes and cables leading 
to instability phenomena. Experimental testing 
using tachometry measurements are currently 
performed to be compared with the numerical 
results (figure 19, left and middle). 

B. Curved panel generation: When the panel is not 
fixed, mechanisms occur perpendicularly to the 
flat membranes and the strips can rotate relatively. 
The panel may therefore be deformed by flexing 
to generate an anticlastic shape. Numerical 
studies, using imposed displacements on the 
edges, are pursued (figure 19, right) in association 
with experimental testing. 

C. Applications: This panel may be characterized 
by its light weight and flexibility when it is not 
fixed on the edges. In contrast, when boundary 
conditions are imposed, the first behavior analysis 
results show a good rigidity compared to its own 
weight. Some applications may be therefore 
anticipated, mainly for surface cladding (roofing 



JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS 

 87 

or wall) made of flat or curved precast panels 
fixed onto a rigid structure. Moreover, the two 
layers of membranes can be of various types 

(waterproofed, solar filtration effects…) and offer 
the possibility of inserting in between air, or 
material for thermal, or acoustic insulation. 

 

 

Figure 19. FEM analysis, experimental testing and anticlastic panel generation 

 
5. CONCLUSION 

Following the construction of a flat soft 
“tensegrity like” panel prototype, a mechanical 
analysis is presented to determine the governing 
relationships between the system geometry and its 
initial forces. A first form-finding approach is thus 
proposed to provide a form control method. It 
allows determination of the tension in the 
membrane layers from a given strip geometry 
(amplitude and length of a wave segment). A 
force control strategy allows then calculating the 
characteristics of the strip (amplitude and 
wavelength) according to a required membrane 
tension. The boundary segment of a strip is also 
analyzed to give information for its cross-section 
dimensions. Finally, the geometry of the 
undulating strip is calculated. Several results are 
presented, dealing with the prototype panel, and 
by considering different levels of membrane 
tension or strip wavelength. 

The results obtained are exploitable for a load 
analysis under external actions. Perspectives deal 
with the study of the panel mechanical behavior, 
the possibility to flex it to generate curved shapes 
and structural cladding applications. 
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